Compilation of IOL Power Calculation Formulas and When to Utilize
All content on Eyewiki is protected by copyright law and the Terms of Service. This content may not be reproduced, copied, or put into any artificial intelligence program, including large language and generative AI models, without permission from the Academy.
Introduction
An increasingly important objective of cataract surgery is the minimization of refractive error. Achieving this requires that the surgeon choose an appropriate IOL power calculation formula, which is not a trivial task. Substantial progress has been made since Fyodorov introduced the classical vergence formula [1] and a myriad of methods have since been developed to handle unique populations of patients. Herein, we seek to compile a list of formulas for use in surgery naïve eyes (Table1), those with clinically significant astigmatism in which a toric IOL is anticipated (Table 2), and those with a history of corneal refractive surgery (Table 3).
While IOL power calculation formula selection is a critical component of the pre-surgical planning process, it should always be used in conjunction with an optimization of the optic media including adequate surface lubrication, validation of diagnostic testing for quality, lens constant optimization, meticulous intraoperative technique, tailoring of the IOL model to the patient's needs and desires, and careful post-operative manifest refractions to evaluate for unexpected outcomes.
Tables can be expanded or collapsed by clicking the Expand/Collapse link at the upper right hand corner of the particular table.
Table 1: Spherical IOL Power Formulas | |||||
---|---|---|---|---|---|
Formula Name | Year | Formula Classification | Variables | Advantages | Disadvantages |
Barrett Universal (BU)[2][3] | Version I: 1993[3] | Vergence |
***Formula not publicly available |
|
|
EVO 2.0 |
2019 |
Vergence |
|
| |
Haigis | 2004 | Vergence |
|
||
Hill-RBF | Version 2: 2018 | Artificial Intelligence |
|
| |
Hoffer Q[22] | 1993 | Vergence |
|
|
|
Hoffer QST | 2021 | Artificial Intelligence |
|
|
|
Holladay 1[26] | 1988 | Vergence |
|
|
|
Holladay 2 | 1995 | Vergence |
|
|
|
Intraoperative Aberrometry (IA) [30][31]
|
2005 [31] | Vergence |
|
|
|
Kane | 2017 | Blended (Vergence, Regression, and Artificial Intelligence-based) |
|
||
Ladas Super Formula | 2015 | Artificial Intelligence |
|
|
|
OKULIX[35] | 2002 | Ray-tracing |
|
| |
Olsen-C[38][39] | 2014 | Ray-tracing |
|
| |
PEARL-DGS[40] | 2021 | Artificial Intelligence |
|
|
|
SRK/T[41] | 1990 | Vergence |
|
|
|
Table 2: Toric IOL Power Formulas | ||||
---|---|---|---|---|
Formula Name | Year | Variables | Advantages | Disadvantages |
Abulafia-Koch Toric[43] | 2016 |
|
|
|
Barrett Toric | 2015 |
|
|
|
Baylor Toric Nomogram [49] | 2013 |
|
| |
EVO 2.0 Toric | 2020 |
|
|
|
Holladay 2 Toric[50] | 2019 |
|
|
|
Intraoperative Aberrometry (IA) [30][31]
|
2005[31] |
|
| |
Kane Toric | 2020 |
|
|
|
Naeser-Savini [46] | 2021 |
|
|
|
Table 3: Post-Corneal Refractive Surgery IOL Power Calculation Formulas | ||||
---|---|---|---|---|
Formula Name | Year | Variables | Advantages | Disadvantages |
Adjusted Atlas 9000 [56] | 2007 |
|
| |
Adjusted EffRP [57] | 2002 |
|
|
|
ASCRS Post-LVC IOL Power Calculator[59] | 2007 |
|
|
|
Barrett True-K | 2015 |
|
|
|
Clinical History Method [63] | 1989 |
|
|
|
Corneal Bypass Method [64] | 2006 |
|
|
|
EVO 2.0 | 2019 | Vergence |
|
|
Feiz-Mannis [65] | 2001 |
|
|
|
Haigis-L[68] | 2008 |
|
|
|
Intraoperative Aberrometry[30][31]
|
2005[31] |
|
|
|
Masket[73] | 2006 |
|
| |
OCT (RTVue)[75] | 2010 |
|
|
|
OKULIX[35] (Ray Tracing) | 2002 |
|
|
|
Potvin-Hill[76] | 2015 |
***Formula not publicly available |
|
|
Schuster/Schanzlin-Thomas-Purcell (SToP)[77] | 2016 |
|
|
|
Shammas-PL[78] | 2003 |
***Formula not publicly available |
|
|
Wang-Koch-Maloney[67] | 2004 |
|
|
Abbreviation Table | |
---|---|
Abbreviation | Terminology |
ACA | anterior corneal astigmatism |
ACD | anterior chamber depth |
AKA | also known as |
AL | axial length |
ATR | against-the-rule (corneal astigmatism) |
BUII | Barrett Universal II |
CCT | central corneal thickness |
D | diopter(s) |
DF | design factor |
DGS | Debellemanière, Gatinel, Saad (last names of PEARL-DGS formula authors) |
EffRP | effective refractive power |
ELP | effective lens position |
EVO | Emmetropia Verifying Optical |
Hoffer QST | Hoffer Q Savini Taroni |
IA | intraoperative aberrometry |
IOL | intraocular lens |
K | keratometry |
LASIK | laser-assisted in-situ keratomileusis |
LF | lens factor |
LT | lens thickness |
LVC | laser vision correction |
mm | millimeter |
OCT | optic coherence tomography |
OLCR | optical low coherence reflectometry |
ORA | Optiwave Refractive Analysis |
pACD | personalized anterior chamber depth |
PEARL | Postoperative spherical Equivalent Prediction using ARtificial Intelligence and Linear algorithms
OR Prediction Enhanced by ARtificial Intelligence and output Linearization |
PCI | partial coherence interferometry |
PRK | photorefractive keratectomy |
RCT | randomized control trial |
RBF | radial basis function |
SICA | surgically-induced corneal astigmatism |
SRK/T | Sanders-Retzlaff-Kraff theoretical |
SF | surgeon factor |
TCA | total corneal astigmatism |
WTR | with-the-rule (corneal astigmatism) |
WTW | white-to-white corneal diameter distance |
- ↑ Fyodorov SN, Galin MA, Linksz A. Calculation of the optical power of intraocular lenses. Invest Ophthalmol. 1975 Aug;14(8):625-8. PMID: 1150402.
- ↑ Barrett GD. Intraocular lens calculation formulas for new intraocular lens implants. J Cataract Refract Surg. 1987;13(4):389-396. doi:10.1016/s0886-3350(87)80037-8
- ↑ 3.0 3.1 Barrett GD. An improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg. 1993;19(6):713-720. doi:10.1016/s0886-3350(13)80339-2
- ↑ Abulafia A, Barrett GD, Rotenberg M, et al. Intraocular lens power calculation for eyes with an axial length greater than 26.0 mm: Comparison of formulas and methods. J Cataract Refract Surg. 2015;41(3):548-556. doi:10.1016/j.jcrs.2014.06.033
- ↑ Choi A, Kwon H, Jeon S. Accuracy of theoretical IOL formulas for Panoptix intraocular lens according to axial length. Sci Rep. 2021;11(1):7346. doi:10.1038/s41598-021-86604-5
- ↑ Kane JX, Van Heerden A, Atik A, Petsoglou C. Intraocular lens power formula accuracy: Comparison of 7 formulas. J Cataract Refract Surg. 2016;42(10):1490-1500. doi:10.1016/j.jcrs.2016.07.021
- ↑ 7.0 7.1 7.2 Rocha-de-Lossada C, Colmenero-Reina E, Flikier D, et al. Intraocular lens power calculation formula accuracy: Comparison of 12 formulas for a trifocal hydrophilic intraocular lens. Eur J Ophthalmol. 2021;31(6):2981-2988. doi:10.1177/1120672120980690
- ↑ 8.0 8.1 Eppley SE, Arnold BF, Tadros D, Pasricha N, de Alba Campomanes AG. Accuracy of a universal theoretical formula for power calculation in pediatric intraocular lens implantation. J Cataract Refract Surg. 2021;47(5):599-605. doi:10.1097/j.jcrs.0000000000000495
- ↑ 9.0 9.1 Wang KM, Jun AS, Ladas JG, Siddiqui AA, Woreta F, Srikumaran D. Accuracy of Intraocular Lens Formulas in Eyes With Keratoconus. Am J Ophthalmol. 2020;212:26-33. doi:10.1016/j.ajo.2019.11.019
- ↑ 10.0 10.1 10.2 10.3 Melles, R. B., Holladay, J. T. & Chang, W. J. Accuracy of intraocular lens calculation formulas. Ophthalmology 125, 169–178 (2018).
- ↑ 11.0 11.1 11.2 Voytsekhivskyy OV, Tutchenko L, Hipólito-Fernandes D. Comparison of the Barrett Universal II, Kane and VRF-G formulas with existing intraocular lens calculation formulas in eyes with short axial lengths. Eye Lond Engl. Published online January 15, 2022. doi:10.1038/s41433-021-01890-7
- ↑ 12.0 12.1 12.2 Kane JX, Melles RB. Intraocular lens formula comparison in axial hyperopia with a high-power intraocular lens of 30 or more diopters. J Cataract Refract Surg. 2020;46(9):1236-1239. doi:10.1097/j.jcrs.0000000000000235
- ↑ Cooke DL, Cooke TL. Comparison of 9 intraocular lens power calculation formulas. J Cataract Refract Surg. 2016;42(8):1157-1164. doi:10.1016/j.jcrs.2016.06.029
- ↑ 14.0 14.1 14.2 14.3 Lin L, Xu M, Mo E, et al. Accuracy of Newer Generation IOL Power Calculation Formulas in Eyes With High Axial Myopia. J Refract Surg Thorofare NJ 1995. 2021;37(11):754-758. doi:10.3928/1081597X-20210712-08
- ↑ Melles RB, Kane JX, Olsen T, Chang WJ. Update on Intraocular Lens Calculation Formulas. Ophthalmology. 2019;126(9):1334-1335. doi:10.1016/j.ophtha.2019.04.011
- ↑ Shrivastava AK, Behera P, Kumar B, Nanda S. Precision of intraocular lens power prediction in eyes shorter than 22 mm: An analysis of 6 formulas. J Cataract Refract Surg. 2018;44(11):1317-1320. doi:10.1016/j.jcrs.2018.07.023
- ↑ 17.0 17.1 17.2 Wang L, Shirayama M, Ma XJ, Kohnen T, Koch DD. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg. 2011;37(11):2018-2027. doi:10.1016/j.jcrs.2011.05.042
- ↑ 18.0 18.1 18.2 Wang L, Koch DD. Modified axial length adjustment formulas in long eyes. J Cataract Refract Surg. 2018;44(11):1396-1397. doi:10.1016/j.jcrs.2018.07.049
- ↑ 19.0 19.1 19.2 Hipólito-Fernandes D, Luís ME, Serras-Pereira R, et al. Anterior chamber depth, lens thickness and intraocular lens calculation formula accuracy: nine formulas comparison. Br J Ophthalmol. Published online November 23, 2020:bjophthalmol-2020-317822. doi:10.1136/bjophthalmol-2020-317822
- ↑ Nemeth G, Modis L. Accuracy of the Hill-radial basis function method and the Barrett Universal II formula. Eur J Ophthalmol. 2021;31(2):566-571. doi:10.1177/1120672120902952
- ↑ Nemeth G, Kemeny-Beke A, Modis L. Comparison of accuracy of different intraocular lens power calculation methods using artificial intelligence. Eur J Ophthalmol. 2022;32(1):235-241. doi:10.1177/1120672121994720
- ↑ Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993;19(6):700-712. doi:10.1016/s0886-3350(13)80338-0
- ↑ 23.0 23.1 Aristodemou, P., Knox Cartwright, N. E., Sparrow, J. M. & Johnston, R. L. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry. J. Cataract. Refract. Surg. 37, 63–71 (2011).
- ↑ 24.0 24.1 Choi A, Kwon H, Jeon S. Accuracy of theoretical IOL formulas for Panoptix intraocular lens according to axial length. Sci Rep. 2021;11(1):7346. doi:10.1038/s41598-021-86604-5
- ↑ Shammas HJ, Taroni L, Pellegrini M, Shammas MC, Jivrajka RV. ACCURACY OF NEWER IOL POWER FORMULAS IN SHORT AND LONG EYES USING SUM-OF-SEGMENTS BIOMETRY. J Cataract Refract Surg. 2022 Apr 27. doi: 10.1097/j.jcrs.0000000000000958. Epub ahead of print. PMID: 35473887.
- ↑ Holladay JT, Prager TC, Chandler TY, Musgrove KH, Lewis JW, Ruiz RS. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg. 1988;14(1):17-24.
- ↑ Kane, J. X., Van Heerden, A., Atik, A. & Petsoglou, C. Accuracy of 3 new methods for intraocular lens power selection. J. Cataract. Refract. Surg. 43, 333–339 (2017).
- ↑ 28.0 28.1 Wang L, Holladay JT, Koch DD. Wang-Koch axial length adjustment for the Holladay 2 formula in long eyes. J Cataract Refract Surg. 2018;44(10):1291-1292. doi:10.1016/j.jcrs.2018.06.057. Errata: January 2019 JCRS Jan 45 117.
- ↑ 29.0 29.1 https://www.hicsoap.com/
- ↑ 30.0 30.1 30.2 Tang M, Li Y, Huang D. An intraocular lens power calculation formula based on optical coherence tomography: a pilot study. J Refract Surg Thorofare NJ 1995. 2010;26(6):430-437. doi:10.3928/1081597X-20090710-02
- ↑ 31.0 31.1 31.2 31.3 31.4 31.5 Ianchulev T, Salz J, Hoffer K, Albini T, Hsu H, Labree L. Intraoperative optical refractive biometry for intraocular lens power estimation without axial length and keratometry measurements. J Cataract Refract Surg. 2005 Aug;31(8):1530-6. doi: 10.1016/j.jcrs.2005.01.035. PMID: 16129287.
- ↑ Kane JX, Chang DF. Intraocular Lens Power Formulas, Biometry, and Intraoperative Aberrometry: A Review. Ophthalmology. 2021;128(11):e94-e114. doi:10.1016/j.ophtha.2020.08.010
- ↑ Sudhakar S, Hill DC, King TS, Scott IU, Mishra G, Ernst BB, Pantanelli SM. Intraoperative aberrometry versus preoperative biometry for intraocular lens power selection in short eyes. J Cataract Refract Surg. 2019 Jun;45(6):719-724. doi: 10.1016/j.jcrs.2018.12.016. Epub 2019 Mar 8. PMID: 30853316.
- ↑ Kane, Jack X. MBBS; Melles, Ronald B. MD. Intraocular lens formula comparison in axial hyperopia with a high-power intraocular lens of 30 or more diopters. Journal of Cataract & Refractive Surgery: September 2020 - Volume 46 - Issue 9 - p 1236-1239 doi: 10.1097/j.jcrs.0000000000000235
- ↑ 35.0 35.1 Preussner PR, Wahl J, Lahdo H, Dick B, Findl O. Ray tracing for intraocular lens calculation. J Cataract Refract Surg. 2002;28(8):1412-1419. doi:10.1016/s0886-3350(01)01346-3
- ↑ 36.0 36.1 36.2 Preussner PR, Wahl J, Weitzel D. Topography-based intraocular lens power selection. J Cataract Refract Surg. 2005 Mar;31(3):525-33. doi: 10.1016/j.jcrs.2004.09.016. PMID: 15811740.
- ↑ 37.0 37.1 Cooke DL, Cooke TL. Approximating sum-of-segments axial length from a traditional optical low-coherence reflectometry measurement. J Cataract Refract Surg. 2019;45(3):351-354. doi:10.1016/j.jcrs.2018.12.026
- ↑ Olsen T, Hoffmann P. C constant: new concept for ray tracing-assisted intraocular lens power calculation. J Cataract Refract Surg. 2014;40(5):764-773. doi:10.1016/j.jcrs.2013.10.037
- ↑ Olsen T, Inventor; IOL Innovations ApS (Arhus, DK), assignee. System and method for determining and predicting IOL power in situ. US patent 8,657,4452014.
- ↑ Debellemanière G, Dubois M, Gauvin M, Wallerstein A, Brenner LF, Rampat R, Saad A, Gatinel D. The PEARL-DGS Formula: The Development of an Open-source Machine Learning-based Thick IOL Calculation Formula. Am J Ophthalmol. 2021 Dec;232:58-69. doi: 10.1016/j.ajo.2021.05.004. Epub 2021 May 13. PMID: 33992611.
- ↑ Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg. 1990;16(3):333-340. doi:10.1016/s0886-3350(13)80705-5
- ↑ 42.0 42.1 Tan Q, Lin D, Wang L, et al. Comparison of IOL Power Calculation Formulas for a Trifocal IOL in Eyes With High Myopia. J Refract Surg Thorofare NJ 1995. 2021;37(8):538-544. doi:10.3928/1081597X-20210506-01
- ↑ 43.0 43.1 43.2 43.3 Abulafia A, Koch DD, Wang L, et al. New regression formula for toric intraocular lens calculations. J Cataract Refract Surg. 2016;42(5):663-671. doi:10.1016/j.jcrs.2016.02.038
- ↑ Fam HB, Lim KL. Meridional analysis for calculating the expected spherocylindrical refraction in eyes with toric intraocular lenses. J Cataract Refract Surg. 2007 Dec;33(12):2072-6. doi: 10.1016/j.jcrs.2007.07.034. PMID: 18053907.
- ↑ Ferreira TB, Ribeiro P, Ribeiro FJ, O’Neill JG. Comparison of astigmatic prediction errors associated with new calculation methods for toric intraocular lenses. J Cataract Refract Surg. 2017;43(3):340-347. doi:10.1016/j.jcrs.2016.12.031
- ↑ 46.0 46.1 46.2 46.3 Savini G, Næser K, Schiano-Lomoriello D, Ducoli P. Optimized keratometry and total corneal astigmatism for toric intraocular lens calculation. J Cataract Refract Surg. 2017;43(9):1140-1148. doi:10.1016/j.jcrs.2017.06.040
- ↑ 47.0 47.1 47.2 47.3 Kane JX, Connell B. A Comparison of the Accuracy of 6 Modern Toric Intraocular Lens Formulas. Ophthalmology. 2020;127(11):1472-1486. doi:10.1016/j.ophtha.2020.04.039
- ↑ 48.0 48.1 Pantanelli SM, Sun A, Kansara N, Smits G. Comparison of Barrett and Emmetropia Verifying Optical Toric Calculators. Clin Ophthalmol Auckl NZ. 2022;16:177-182. doi:10.2147/OPTH.S346925
- ↑ 49.0 49.1 49.2 49.3 Koch DD, Jenkins RB, Weikert MP, Yeu E, Wang L. Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism. J Cataract Refract Surg. 2013;39(12):1803-1809. doi:10.1016/j.jcrs.2013.06.027
- ↑ 50.0 50.1 Holladay JT, Pettit G. Improving toric intraocular lens calculations using total surgically induced astigmatism for a 2.5 mm temporal incision. J Cataract Refract Surg. 2019;45(3):272-283. doi:10.1016/j.jcrs.2018.09.028
- ↑ Goggin M, Moore S, Esterman A. Toric Intraocular Lens Outcome Using the Manufacturer’s Prediction of Corneal Plane Equivalent Intraocular Lens Cylinder Power. Arch Ophthalmol. 2011;129(8):1004-1008. doi:10.1001/archophthalmol.2011.178
- ↑ Holladay JT. Calculation of total surgically induced astigmatism with a toric intraocular lens. J Cataract Refract Surg. 2020 May;46(5):793-794. doi: 10.1097/j.jcrs.0000000000000124. PMID: 32358279.
- ↑ 53.0 53.1 Ianchulev T, Hoffer KJ, Yoo SH, Chang DF, Breen M, Padrick T, Tran DB. Intraoperative refractive biometry for predicting intraocular lens power calculation after prior myopic refractive surgery. Ophthalmology. 2014;121(1):56-50
- ↑ 54.0 54.1 Hatch KM, Woodcock EC, Talamo JH. Intraocular lens power selection positioning with and without intraoperative aberrometry. J Refract Surg. 2015;31(4)237-42.
- ↑ Comparative meta-analysis of toric intraocular lens alignment accuracy in cataract patients: Image-guided system versus manual marking
- ↑ Koch DD, Wang L, “IOL Calculations Following Refractive Surgery,” presented at the ASCRS Symposium on Cataract, IOL and Refractive Surgery, San Diego, California, USA, April 2007.
- ↑ Hamed AM, Wang L, Misra M, Koch DD. A comparative analysis of five methods of determining corneal refractive power in eyes that have undergone myopic laser in situ keratomileusis. Ophthalmology. 2002;109(4):651-658. doi:10.1016/s0161-6420(01)01001-6
- ↑ 58.0 58.1 Baradaran-Rafii A, Fekri S, Rezaie M, et al. Accuracy of Different Topographic Instruments in Calculating Corneal Power after Myopic Photorefractive Keratectomy. J Ophthalmic Vis Res. 2017;12(3):254-259. doi:10.4103/jovr.jovr_74_16
- ↑ https://iolcalc.ascrs.org/
- ↑ Savini G, Hoffer KJ, Barrett GD. Results of the Barrett True-K formula for IOL power calculation based on Scheimpflug camera measurements in eyes with previous myopic excimer laser surgery. J Cataract Refract Surg. 2020 Jul;46(7):1016-1019. doi: 10.1097/j.jcrs.0000000000000205. PMID: 32271267.
- ↑ 61.00 61.01 61.02 61.03 61.04 61.05 61.06 61.07 61.08 61.09 61.10 61.11 Wang L, Hill WE, Koch DD. Evaluation of intraocular lens power prediction methods using the American Society of Cataract and Refractive Surgeons Post-Keratorefractive Intraocular Lens Power Calculator. J Cataract Refract Surg. 2010;36(9):1466-1473. doi:10.1016/j.jcrs.2010.03.044
- ↑ Ferguson TJ, Downes RA, Randleman JB. IOL Power Calculations after LASIK or PRK: Barrett True-K Biometer Only Calculation Strategy Yields Equivalent Outcomes as a Multiple Formula Approach. J Cataract Refract Surg. Published online January 18, 2022. doi:10.1097/j.jcrs.0000000000000883
- ↑ Holladay JT. Consultations in refractive surgery. Refract Corneal Surg 1989;5:203
- ↑ Walter KA, Gagnon MR, Hoopes PC, Dickinson PJ. Accurate intraocular lens power calculation after myopic laser in situ keratomileusis, bypassing corneal power. J Cataract Refract Surg. 2006;32(3):425-429. doi:10.1016/j.jcrs.2005.12.140
- ↑ Feiz V, Mannis MJ, Garcia-Ferrer F, et al. Intraocular lens power calculation after laser in situ keratomileusis for myopia and hyperopia: a standardized approach. Cornea. 2001;20(8):792-797. doi:10.1097/00003226-200111000-00003
- ↑ Feiz-Mannis Method. East Valley Ophthalmology. Accessed June 23, 2022. https://doctor-hill.com/iol-power-calculations/post-keratorefractive-surgery/myopic-lasik-lasek-prk/feiz-mannis-method/
- ↑ 67.0 67.1 67.2 Wang L, Booth MA, Koch DD. Comparison of intraocular lens power calculation methods in eyes that have undergone LASIK. Ophthalmology. 2004;111(10):1825-1831. doi:10.1016/j.ophtha.2004.04.022
- ↑ Haigis W. Intraocular lens calculation after refractive surgery for myopia: Haigis-L formula. J Cataract Refract Surg. 2008 Oct;34(10):1658-63. doi: 10.1016/j.jcrs.2008.06.029. PMID: 18812114.
- ↑ https://doctor-hill.com/iol-main/haigis-l.htm
- ↑ 70.0 70.1 Wang L, Tang M, Huang D, Weikert MP, Koch DD. Comparison of Newer Intraocular Lens Power Calculation Methods for Eyes after Corneal Refractive Surgery. Ophthalmology. 2015;122(12):2443-2449. doi:10.1016/j.ophtha.2015.08.037
- ↑ Abulafia A, Hill WE, Koch DD, Wang L, Barrett GD. Accuracy of the Barrett True-K formula for intraocular lens power prediction after laser in situ keratomileusis or photorefractive keratectomy for myopia. J Cataract Refract Surg. 2016;42(3):363-369. doi:10.1016/j.jcrs.2015.11.039
- ↑ Gouvea L, Sioufi K, Brown CE, Waring Iv G, Chamon W, Rocha KM. Refractive Accuracy of Barrett True-K vs Intraoperative Aberrometry for IOL Power Calculation in Post-Corneal Refractive Surgery Eyes. Clin Ophthalmol. 2021 Oct 27;15:4305-4315. doi: 10.2147/OPTH.S334489. PMID: 34737545; PMCID: PMC8558044.
- ↑ 73.0 73.1 Masket S, Masket SE. Simple regression formula for intraocular lens power adjustment in eyes requiring cataract surgery after excimer laser photoablation. J Cataract Refract Surg. 2006 Mar;32(3):430-4. doi: 10.1016/j.jcrs.2005.12.106. PMID: 16631051.
- ↑ 74.0 74.1 https://www.doctor-hill.com/iol-main/masket_method.htm
- ↑ Tang M, Li Y, Huang D. An intraocular lens power calculation formula based on optical coherence tomography: a pilot study. J Refract Surg. 2010 Jun;26(6):430-7. doi: 10.3928/1081597X-20090710-02. Epub 2010 Jun 17. PMID: 20677729; PMCID: PMC2916192.
- ↑ Potvin R, Hill W. New algorithm for intraocular lens power calculations after myopic laser in situ keratomileusis based on rotating Scheimpflug camera data. J Cataract Refract Surg. 2015;41(2):339-347. doi:10.1016/j.jcrs.2014.05.040
- ↑ Schuster AK, Schanzlin DJ, Thomas KE, Heichel CW, Purcell TL, Barker PD. Intraocular lens calculation adjustment after laser refractive surgery using Scheimpflug imaging. J Cataract Refract Surg. 2016 Feb;42(2):226-31. doi: 10.1016/j.jcrs.2015.09.024. PMID: 27026446.
- ↑ Shammas HJ, Shammas MC, Garabet A, Kim JH, Shammas A, LaBree L. Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis. Am J Ophthalmol. 2003;136(3):426-432. doi:10.1016/s0002-9394(03)00275-7
- ↑ Whang WJ, Hoffer KJ, Kim SJ, Chung SH, Savini G. Comparison of intraocular lens power formulas according to axial length after myopic corneal laser refractive surgery. J Cataract Refract Surg. 2021 Mar 1;47(3):297-303. doi: 10.1097/j.jcrs.0000000000000445. PMID: 32991505.
- ↑ Christopher KL, Patnaik JL, Miller DC, Lynch AM, Taravella MJ, Davidson RS. Accuracy of Intraoperative Aberrometry, Barrett True-K With and Without Posterior Cornea Measurements, Shammas-PL, and Haigis-L Formulas After Myopic Refractive Surgery. J Refract Surg. 2021 Jan 1;37(1):60-68. doi: 10.3928/1081597X-20201030-02. PMID: 33432996.
- ↑ Yang R, Yeh A, George MR, Rahman M, Boerman H, Wang M. Comparison of intraocular lens power calculation methods after myopic laser refractive surgery without previous refractive surgery data. J Cataract Refract Surg. 2013;39(9):1327-1335. doi:10.1016/j.jcrs.2013.03.032